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On Positivity of Polynomials:
The Dilation Integral Method
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Abstract—The focal point of this paper is the well known
problem of polynomial positivity over a given domain. More
specifically, we consider a multivariate polynomial � � with
parameter vector restricted to a hypercube � . The
objective is to determine if � � � for all . Motivated by
NP-Hardness considerations, we introduce the so-called dilation
integral method. Using this method, a “softening” of this problem
is described. That is, rather than insisting that � � be positive
for all , we consider the notions of practical positivity and
practical non-positivity. As explained in the paper, these notions
involve the calculation of a quantity � which serves as an
upper bound on the percentage volume of violation in param-
eter space where � � �. Whereas checking the polynomial
positivity requirement may be computationally prohibitive, using
our -softening and associated dilation integrals, computations
are typically straightforward. One highlight of this paper is that
we obtain a sequence of upper bounds which are shown to
be “sharp” in the sense that they converge to zero whenever the
positivity requirement is satisfied. Since for fixed , computational
difficulties generally increase with , this paper also focuses on
results which reduce the size of the required in order to achieve
an acceptable percentage volume certification level. For large
classes of problems, as the dimension of parameter space grows,
the required value for acceptable percentage volume violation
may be quite low. In fact, it is often the case that low volumes of
violation can be achieved with values as low as � �.

Index Terms—Approximation methods, integration, numerical
analysis, polynomials, risk analysis, robustness, uncertain systems.

I. INTRODUCTION

T HIS paper is motivated by the following general problem
which lies at the heart of a voluminous body of litera-

ture dealing with robustness of systems: Given a multivariate
polynomial in the vector variable ,
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determine if the inequality

is satisfied for all in a given set . This being the case, we call
a positive pair. For the case when the weaker condition

is guaranteed, we call a non-negative pair.
With these specific problems being the focal point of this

paper, it is also noted that the theory to follow can readily be
modified to address the case of multiple inequalities .

A. Examples

To provide a simple illustration showing how a typical robust-
ness problem is massaged into a polynomial positivity problem,
we begin with a three-dimensional single-input state space pair

which is assumed to be controllable. That is, the nom-
inal controllability matrix

is nonsingular. In this context, the question of robust controlla-
bility arises when uncertain parameters are introduced. To il-
lustrate, suppose describes the admissible values of the
th uncertain parameter with resulting space pair

described by

where , , are fixed 3 3 matrices and , , are
fixed 3 1 vectors representing the so-called uncertainty struc-
ture. Now, to determine if this uncertain system is robustly con-
trollable, we need to check if the controllability matrix

has rank three for all in the hypercube

To massage this problem to the one considered in this paper,
without loss of generality, we first assume that

Next, we simply define the polynomial

and claim that robust controllability is equivalent to positivity
of the pair . To justify this claim, a simple continuity
argument will suffice. That is, since , continuity of

dictates the only way that controllability can be lost is if
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for some . Later in this paper, this system
will be revisited in order to demonstrate the efficacy of the dila-
tion integral method which we put forward.

Using ideas similar to those described in the example above,
one can address many unsolved problems from the systems and
control literature. For example, while there are now a number of
robust stability results in the literature which apply to systems
having a so-called linear uncertainty structure, results for the
nonlinear case have been slow in forthcoming; see Section III-E
for further discussion.

B. Semi-Definite Programming Approach

While not considered here, other papers in this issue provide
results which are sparked by some important connections which
have been made between the seminal work of [5]–[7] on posi-
tive polynomials in the eighties and the solution to robust con-
trol problems via semi-definite programming.Taking off on these
papers, [8]–[10] introduce the important idea that after reformu-
lating a polynomial positivity problem as a sum of squares (SOS)
problem, one could obtain a solution via a sequence of semi-defi-
nite programs. This meant that convex programming tools could
now be brought into play; see [11] for a nice collection of recent
developments and a more detailed review of the polynomial pos-
itivity literature going back to a conjecture by Hilbert.

C. NP-Hardness Considerations

As motivation for the methods presented in this paper, it is
noted that the polynomial positivity problem is NP-Hard; e.g.,
see the survey of these issues in [12] and various approaches to
special cases such as Tarski decision methods in [13], quantifier
elimination in [14], the use of Bernstein polynomials as in [15],
the use of the structured singular value as in [16], the use of zero
set theory in [17], and the use of Gröbner bases as in [18].

D. Key Ideas in This Paper

With nonlinear parameter dependence and computational dif-
ficulty serving as motivation, the technical novelty of this paper
involves a “softening” of the polynomial positivity problem. To
this end, instead of insisting that be positive for all ,
we allow for the possibility that this requirement be violated on a
set in parameter space which is deemed to be suitably small. For
example, in some robustness problems, if performance specifi-
cations are satisfied over all but one percent of the volume of the
uncertain parameter set, one may take the point of view that this
defines a suitably small risk. More generally, instead of using one
percent, the user pre-specifies an acceptable percentage volume
of violation and computations can be terminated when this
risk level is certified. In the sequel, this notion is called “prac-
tical positivity” and we can also include a corresponding notion
of “practical non-positivity.” That is, we show that when the de-
sired volume certification fails to be attained, it follows that the
desired inequality is “close” to being violated.

There are a few important points to note regarding the
dilation integral method in this paper versus the semi-definite
programming (SDP) approach pursued by other authors in this
issue. First, we draw the reader’s attention to the fact that in

this paper, we have assumed that the restraint set is a hyper-
cube1. In contrast, the SDP approach allows for more general
constraint sets such as polynomial inequalities. Second, for the
large class of robustness problems with being hypercubic,
such as those with interval bounds on uncertain parameters,
our framework has some advantages over SDP programming.
Namely, as seen in Section I-E, our theory is extremely easy to
use and does not require expertise in SDP related areas such
as convex programming and linear matrix inequalities. In its
simplest form, our method involves generating a function of a
scalar variable and picking out its minimum from a plot. While
both the SDP approach and the dilation integral approach
run into the NP-hardness barrier as the dimension increases,
anecdotal evidence given in this paper leads us to believe
that our softening of the problem formulation enables us to
compute for large classes of problems where SDP may fail
due to excessively high dimension. We note that this is only a
conjecture and not proven in this paper.

The difficulty of high dimension also afflicts the Gröbner
basis approach to the problem of polynomial positivity over a
hypercube. For example, the Singular [19] software program
quickly runs out of memory when trying to compute the Gröbner
basis when the polynomial in question is the determinant of a
5 5 interval matrix, analogous to the example that follows in
Section III-D. Using the softening of the problem formulation
given in this paper, however, this problem can be addressed with
modest computational resources.

E. Dilation Integrals

One of the main focal points of this paper is the so-called di-
lation integral. The simplest case is the sequence of -functions

which are readily shown to be convex for and being
a positive even integer. The motivation for the use of such inte-
grals is a basic inequality which we establish in Section II.

Namely, with

the bound

holds for all and all positive even integers . As men-
tioned earlier, this type of volume bound can be used as a ratio-
nale for termination of computation. Moreover, it is established
in the sequel that this bound is “sharp” in the sense that it con-
verges to zero whenever the required polynomial positivity con-
dition is satisfied.

F. Motzkin Polynomial

As further motivation, the example of Motzkin (see Fig. 1)
is useful to demonstrate the power of our method mentioned
above. Consider the polynomial

1The main theorems, presented in Section II of this paper, do hold in the more
general case of� being a compact set. However, the simplicity of the computa-
tion of the dilation integral may be lost when the domain� is more complicated.
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Fig. 1. Motzkin polynomial.

Fig. 2. Plot of � ���.

which is positive everywhere on the unit square except the ver-
tices where it is zero. This polynomial does not admit an SOS
representation. Moreover, as seen from the plot above, for

with , the pair is positive.
To illustrate how the dilation integral method recovers this

result, we take and . A straightforward compu-
tation now leads to

Now, from the plot of this function in Fig. 2, we obtain the min-
imum value . In other words, we can guarantee
that the positivity requirement is violated on a set whose volume
is at most one tenth of one percent of the volume of . If a higher
level of accuracy is required, a similar integration can be carried
out to obtain .

II. DILATION INTEGRAL METHOD: SIMPLEST FORM

In this section, we provide the simplest version of our results
which serves as the “driver” for the dilation integral theory in
this paper. That is, in this section, we provide results where there
is only a scalar variable to be optimized. In later sections, it is
seen that one can obtain even tighter bounds by performing an

optimization with replaced by a vector of parameters which
can be chosen by the user.

Recalling the discussion in Sections I-D and E, the main idea
is that each of the integrals is a volume bound on the per-
centage violation. Once the integral is computed in closed form,
a convex scalar minimization2 with respect to results in

which is also a volume bound. As seen in Theorem II-A, based
on the main theorem in [1], the bounds obtained in this manner
are sharp in the sense that if and only if
as .

A. Theorem (See Appendix for Proof)

For the given pair with associated dilation integrals

defined for positive even integers , their minima

are attained. Moreover, the following conditions hold:

1) For all even, the percentage violation satisfies

2) If is a positive pair, then .
3) If , then is a non-negative pair with

.

B. Interpretation of the Dilation Integral

In the proof of Theorem II-A, we chose a specific value of the
parameter such that the inequality
holds for all provided that the pair is positive.
Subsequent exponentiation with increasing reduces the mag-
nitude of the integrand and therefore, arbitrarily small values of
the integral are attainable. It is readily seen that the positivity of
the pair is equivalent to the existence of a value of
such that for all . In other words, by
using the parameter , the range of is scaled to the seg-
ment (0, 1).

This scaling appropriately corresponds to dilation of the
range when is “small,” or to contraction when is
“large,” and we refer to the integral as a dilation integral.
Note that such a dilation takes place for any .

C. Connection to Markov Inequality

Although we are working within a purely deterministic
framework, it should be noted that the -softening approach
which we pursue has a probabilistic analogue. That is, if we
view as a random vector uniformly distributed over , the
quotient represents the probability of
violating the positivity specification. In this context, the basic

2In fact, the value of � which minimizes the function � ��� is the only real
zero of the function � ���

�
� ����� ���.
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relation can be thought of as the
Markov inequality. Indeed

Whereas in this probabilistic setting, the dilation integral bound
above represents a hard theoretical bound on the proba-

bility of violation, we also point to a body of literature which
can be used to obtain an empirical estimate of this probability
via randomized algorithms. In contrast to this paper, such an
estimate is certified in the sense of probable approximate cor-
rectness; e.g., see [20], [21] and references therein.

D. The Conditioner

The key idea proposed thus far is that a user can “exit” from a
dilation integral computation if one attains a value of below
some acceptable value; e.g., perhaps a 1% volume of violation is
deemed appropriate. On the other hand, when a low is not at-
tained, we claim that one might still be able to exit computation
based on the following simple idea: For a given pair , we
define the underlying conditioner as the maximum percentage
variation of about the midpoint of its range. That is, with

corresponding to minimization and maximization of , we
obtain

where

is the spread of and

is the midpoint of . Equivalently,

To illustrate the ideas above, for the example , we
obtain , and .

A couple of key observations are in order. First, while would
typically be quite difficult to compute, it is seen in the sequel that
one can generate a sequence which converges to . Second,
for a pair failing to be positive, the conditioner may be
arbitrarily large or possibly infinite. It is also simple to show,
using basic geometry on the real line, that if there exists a point

such that , then the condition is
equivalent to positivity of the pair . This suggests that as

, while positivity is guaranteed in a theoretical sense, in

practice, one might violate positivity if there are small errors in
the mathematical model for the pair . Said another way,
while theoretical positivity is guaranteed when , the situ-
ation becomes increasingly “dangerous” from a practical point
of view. That is, as gets close to unity, this indicates either that

is non-empty or there exist values of which lead
to a very “close call” regarding the desired positivity of .
In such a case, while the pair might still be positive in
a theoretical sense, we deem it to be non-positive in a practical
sense.

E. Using to Exit Computation

Using the definition of , the chain of inequalities

suggests that one can define an estimator for the conditioner .
Namely, with

we now have the lower bound

which can be used to provide an “exit point” for computations.
To illustrate, suppose dilation integral analysis leads to
. Then, via the inequalities above, we obtain the result

. With this high level for the conditioner, in
many applications, it is arguable that the pair should be
deemed non-positive in a practical sense.

More generally, the relationship , depicted in Fig. 3
for , provides the basis for our “two-sided” exit
theory for numerical computation. If we arrive at a large value
of and is still not sufficiently small, one can be certain that
the conditioner is quite large; e.g., if remains above , by
the time one reaches , we see from the plot that .

In summary, the key idea underlying the dilation integral
method is that there are two scenarios which one can use to
terminate numerical computation before gets sufficiently
large so as to render computation intractable. The first of these
scenarios occurs if we arrive at the point where falls below
some tolerable percentage volume of violation, call it . In
this case, we deem the pair to be practically positive.
On the other hand, if fails to become acceptably small at
a level which is feasible for the required computation, a
second opportunity to exit computation presents itself if gets
suitably large; say , where represents a level of
conditioning above which we deem the pair to be non-positive
in a practical sense. A formalization and generalization of the
ideas above is given in the following theorem.
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Fig. 3. Lower bounds on the conditioner �.

F. Theorem (see Appendix for Proof)

If is a positive pair, it follows that:

Alternatively, if is not a positive pair, then

Moreover, for both cases above, the sequence of estimates is
non-decreasing.

G. Low -Value Hypothesis

In this section, we provide some evidence in support of the
hypothesis that practical positivity or non-positivity can often
be certified with a value of which may be much lower than that
predicted by their theoretical bounds. To this end, we consider

and first note that the desired optimum for and can
be provided in closed form. Assuming is a positive pair,
a straightforward differentiation with respect to leads to the
closed form solution

Beginning with this formula, we now consider some benchmark
cases. Our claim is that in some cases, with suitably large, we
can obtain a low value for or a high value for by exploiting
the uncertainty structure. In other words, exit becomes possible
with low computational effort. It is seen that increasing the di-
mension of results, on average, in a decrease in and an
increase in .

In order to make these claims more meaningful, we take to
be a hypercube with radius centered at the origin. Now,
to avoid trivialities, we assume and define to be
the maximal radius for under which positivity is guaranteed.
We now work with the quantity , in
order to gauge the behavior of with respect to , the
percentage of the maximum allowable uncertainty.

For the linear function with , we intro-
duce the squared-norm ratio , where
denotes the -norm; i.e., . Subsequently, after
a calculation using , we obtain

Identifying with different points in “problem space”
and noting that , for fixed , it follows that:

These inequalities suggest that the “realized” volume esti-
mate may decrease quite rapidly with the dimension . Specif-
ically, when is large, since in some “average”
sense, one can expect to be small. To test this hypothesis,
we generated samples uniformly distributed over the sur-
face of the euclidean norm unit ball in and estimated the
average behavior of both and . Indeed, with and

, respectively, denoting these estimates averaged over the
set

we see that as the dimension grows, on average, the use of
will be quite effective. To illustrate, for a positivity problem with

parameters and a radius of uncertainty which is 80% of
, one can expect, on average, that the volume of violation

will be at most 1% of the total volume, . It
is important to note that the phenomenon above, improvement
of average performance with increasing dimension , is not at-
tributable to the linearity of the problem under consideration.
By carrying out more complicated algebraic calculations, rather
similar results can be shown for other classes of functions. For
example, for the multilinear function
with , a lengthy computation yields

Using this formula, it can again be demonstrated that with
suitably large, practical positivity or non-positivity can often be
certified with .

To conclude this section, it is important to emphasize that the
arguments and results given above only suggest that low values
of will suffice. That is, the results given for the specialized
linear and multilinear problem classes considered above provide
no guarantee that the more general polynomial case will exhibit
the same low- behavior. In this regard, our point of view is
that a necessary condition for the dilation integral approach to
be efficacious is that it works well on simple benchmarks for
which one can readily quantify the behavior of the method with
respect to . Finally, note that this issue of computational effort
with respect to serves to motivate much of the analysis in
Section III.
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III. EXTENSION: CONVEX DILATION INTEGRALS

The objective in this section is to improve the volume bound
provided by the dilation integral method. This extension is mo-
tivated by the fact that we want converging as rapidly as pos-
sible in order to insure that the large number of terms in the sym-
bolic integration does not lead to computational intractability.
To this end, we now introduce additional parameters into the di-
lation integral which can be optimized to improve convergence
of the volume bound . Indeed, for , let be a
user-chosen real-valued function and define

Now, with user-chosen compact restraint set , with
for all and all , it follows that the violation set

for this new function , defined as

will be the same as the original set of violation; i.e.,

Therefore, the dilation integral method, introduced in Section II,
may now be used to obtain a sequence of estimates for
the percentage violation of both the new function and the
original function . Namely, for each , the quantity

is an upper bound on the percentage violation of both and ,
and the inequality

holds for every and . To achieve the tightest upper
bound on the percentage violation for , we seek

A. Implications of Extra Parameters

With the extra degrees of freedom incorporated into the dila-
tion integral, the main “payoff” is that with as above, we can
accelerate the convergence of the volume bound by imposing a
very simple condition on . Namely, if is chosen to have
the property that

for some , then with as defined in Section II, it is
readily shown that

In other words, whenever the pair is positive, the inclu-
sion of -parameters will accelerate the rate of convergence of

the volume estimates to zero. Even a simple scheme involving
a finite set will accelerate convergence, while requiring little
extra computation.

Furthermore, if we select to be a convex set, we claim that
convex optimization methods can be applied to find in a com-
putationally efficient manner, even for problems of high dimen-
sion; e.g., [22]. Note that no gridding of the entire parameter
space is required under this condition; the estimate may be ob-
tained by sweeping and solving a convex program at each step.
In the lemma below, we describe a simple scenario under which
these desired properties on and are assured.

B. Lemma (see Appendix for Proof)

With

and

for some positive , the function is convex in for
every fixed .

C. Example (Robust Controllability)

We now revisit the motivating example from Section I-A to
demonstrate the improvement seen when a function is
optimized in the estimate for the percentage violation. We con-
sider the uncertain state-space system described in Section I-A

with randomly generated data

and parameter bounding set where
is the variable uncertainty bound which we will consider.

To motivate the analysis to follow, we imagine an adaptive
algorithm with parameter vector evolving in the region .
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TABLE I
PERCENTAGE VIOLATION ESTIMATES

With denoting the controllability matrix, it is often impor-
tant to know that either the loss of controllability manifold

is empty or that it is very unlikely that the parameter vector
gets close to this set as time evolves. To complete this prelimi-
nary discussion, we note that a volume bound on the set where

also serves as a volume bound on . Hence, if
we obtain a bound which is very small, this is synonymous with
a low likelihood that controllability will be lost as the parameter
vector roams over .

With this motivation in mind, we take .
Noting that , we seek to determine the ex-
tent to which the pair is “practically” positive. Following
Lemma III-B, we set and

Since the requirement of nominal positivity is satisfied, we now
obtain the percentage violation estimates and for various
uncertainty radii from to which are shown in
Table I. These values were generated for . The degree
of improvement varies, but for most examples, the new volume
estimate is one-third to one-fifth of the original estimate .

To complete the discussion of these numerical results, we
raise the following question which will be addressed in the se-
quel: Are there ways to refine the computation of which
makes it possible to handle much larger values of in a com-
putationally tractable manner? For example, if one deems the
current volume bound at to represent an unacceptably
large risk, for cases when tends to zero, it is important to have
computational capability to compute the dilation integral when

is large.

D. Example (Interval Matrix)

We now provide a second numerical example which illus-
trates the improvement in the estimate for percentage violation
which may be seen when additional optimization parameters are
introduced. Indeed, consider the basic case in which the func-
tion is the determinant of a 3 3 interval matrix. That is

TABLE II
PERCENTAGE VIOLATION ESTIMATES

for real fixed parameters and . We now study positivity of
by comparing the new estimate for the percentage vi-

olation with the old estimate . Again, following Lemma III-B,
we set and

Ten different interval matrix examples were generated by ran-
domly selecting the parameters and . Each example was
scaled so that the function would be positive for all in the
unit cube. With the true percentage violation known to be zero,
we computed and values for each example and compared
the accuracy of these percentage violation estimates. Table II
lists the values obtained for and for the 10 examples. The
values were computed for .

As seen in Table II, the new method yields an upper bound
on the percentage violation which is at least one order of

magnitude smaller than . The degree of improvement that
provides varies greatly from example to example, and does not
seem to depend on conditioning.

E. Remarks

The ideas used to address the examples above can be readily
adapted to solve a number of additional systems and control
problems. To illustrate, we now sketch how our approach might
be applied to a large class of robust stability problems with
state equation matrix having entries which are multi-vari-
able polynomials in the components of . While there are
now a number of robust stability results in the literature which
apply to systems having a so-called linear uncertainty structure,
results for this nonlinear polynomial case have been slow in
forthcoming. Going back to the eighties and nineties, we see
that only special cases of this general problem class have been
solved; e.g., see [23]–[25].

To sketch the main ideas noting that further work is needed
to flesh out the details, we first observe that the associated Hur-
witz matrix, call it , also depends polynomially on the .
Letting denote the nominal and assuming, without loss
of generality, that is stable with , we define
the set of polynomials , where de-
notes the th leading principle minor of the Hurwitz matrix. By
exploiting continuous dependence on , it can now readily be
shown that the unstable subset of , call it , is contained
in the union of the sets
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Therefore, by exploiting the inequality

we can prove the following: If we carry out dilation integral
tests and obtain sequences for the th bad set above, robust
stability is guaranteed if and only if each of these sequences
tends to zero. Moreover, along the iterative path, we have the
bound

IV. COMPUTATIONAL ASPECTS

One of the most attractive features of the dilation integral
method is that it is extremely easy to implement. To illustrate
this point, the MATLAB code generating the Motzkin plots in
Fig. 2 is given below

As illustrated above, we use straightforward symbolic calcula-
tions as the main technical tool for computing the dilation in-
tegrals. While this method is computationally exact and easily
performed, for example, using the Symbolic Math Toolbox in
MATLAB, we note that computation may not be tractable for high
dimensions of and a large number of monomials in . This is
due to the possibility that high values of will be required to ob-
tain low volume certification for or high value of the con-
ditioner . When is large, the required symbolic expressions
in the integrand defining can easily lead to an amount of in-
termediate data that may exceed MATLAB memory limitations.
For a class of polynomial positivity problems, the approach de-
scribed in [3] can be used to overcome this difficulty. We now
describe the key elements of this approach.

A. Cubature Methods Avoiding Symbolic Computation

Beginning with the dilation integral, our objective is to show
that one can obtain exact formulae for without recourse
to symbolic computation. This is accomplished via evaluating
the integrand numerically over a finite number of points using
combinations of low-order quadrature formulae as described
below. Such formulae largely reduce the computational burden
and memory requirements. As a result, in many cases, dilation
integrals can be efficiently computed for much higher values of
exponent anddimension as compared to symbolic computa-
tion. Hence, this leads to an opportunity to improve the volume
certification or the conditioning certification .

B. One-Dimensional Case (Quadrature Rules)

In this section, we briefly review the use of quadrature for-
mulae for numerically computing integrals. Beginning with the
one-dimensional case , where a well-known numerical
computation method for approximating the definite integral

of a continuous function is given by so-called quadrature for-
mulae; e.g., see [26]. An -point quadratureformula with nodes

and weights , , is defined by

and we have

where represents the error. Note that the computation
above corresponds to evaluation of the function over the

-point grid .
A quadrature formula is said to be exact for the function if

. The degree of exactness, , of a quadra-
ture formula is defined as the maximum integer such that
the quadrature formula is exact for all polynomials of degree
less than or equal to , and there exists a polynomial of de-
gree such that . In particular, if the nodes
are chosen as the zeros of the th order Legendre orthogonal
polynomial , and the weights are computed by integrating
the associated Lagrange polynomials, then one obtains the max-
imum achievable degree of exactness

This is called a Gauss formula. To conclude this single-variable
case, it is noted that if is a polynomial of degree , with
terms of degree up to , the application of a quadrature for-
mula with degree of exactness yields the exact
numerical value for .

C. Dilation Integrals Over Sparse Grids

The computational scheme outlined above can be extended to
cover the multi-dimensional case . However, in its “naive”
form, the quadrature formula requires the evaluation of the func-
tion over a multidimensional grid which is the Cartesian product
of the corresponding one-dimensional grids for the components
of . Since this leads to a number of nodes which grows ex-
ponentially in the dimension , the computations may become
intractable as increases.

To avoid this exponential growth, the ideas of Smolyak, orig-
inally proposed in [27], can be used. We consider linear combi-
nations of low-order quadrature formulae which require evalua-
tion of the function over a sparse grid , whose cardinality grows
polynomially with respect to the dimension . This approach
has been subsequently studied in papers such as [28], [29], and
exploited recently in [30] in the context of convex optimization.
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By formally introducing an integer called precision level,
the -point Smolyak formula with nodes and weights

may be written as

See [27]–[30] and the references therein for precise formula-
tions, calculation of the weights and nodes, properties and dis-
cussion on low-order cubature formulas and sparse grids. The
first distinguished property of the Smolyak formula is that
it is exact for all multivariate polynomials in variables of total
degree3 less than or equal to . That is, .
The second important property of is that for fixed , the
number of grid points grows polynomially in as

An important point to note is that, for given and , the
nodes and weights of the Smolyak formula can be computed
once for all and stored for successive computations. Indeed,
these universal quantities do not depend on the integrand, but
only on and . The procedure for actually computing the nodes
and weights is the most time-consuming part of the proposed
computational scheme. For this reason, a repository of nodes
and weights for different values of , has been created and is
available from the authors upon request. Once these nodes and
weights are obtained, the Smolyak formula above requires only
, evaluations of the integrand. Application of this approach

to exact computation of dilation integrals is summarized in the
theorem below.

D. Theorem (See Appendix for Proof)

With being a multivariate polynomial of total degree ,
let , and let and , , be the nodes
and weights of the Smolyak formula above. Define

Then, for the dilation integral

it follows that:

E. Remark

The result of Theorem IV-D can be directly applied to the
computation of the minimum of . Indeed, recalling that
the function is convex and attains the minimum at a finite

3The total degree of a monomial ���� � � � � � � � is equal to the sum
of the exponents ��������� � � �� � � � ��� . The total degree of a mul-
tivariate polynomial is defined as the maximum total degree of its monomials.

unique point, the minimizer is directly computed as the unique
real zero of the derivative. Under the conditions of Theorem
IV-D, we obtain the unique minimizer

as the only real zero of the polynomial

F. Example (Resistive Ladder Network)

Consider the three-loop ladder network depicted in Fig. 4,
which contains nine resistors. The gain of the network, defined
as the ratio of the output and input voltages, is given by

and can be computed using mesh analysis. This leads to

� �
������

�������

where

�� �
�� ��� ��� ��� �

��� �� ��� ��� ��� ���

� ��� �� ��� ��� ��	

�

It is assumed that the values of the resistors are uncertain,
with nominal values and uncertain components .
Hence, for , we write

The robustness requirement in this illustrative analysis is that
thegain does not exceed a prespecified level for any value
of within the uncertainty bounding set . We for-
mulate this requirement as follows: With denoting the gain
obtained using the nominal resistors , and de-
noting an acceptable looseness level, we insist that
must hold for all . To recast this robustness requirement
as a polynomial positivity problem, define

To continue the calculation, suppose the looseness level is
and the uncertainty radius is . Since is a

multilinear function of , the robustness requirement holds if
and only if is positive at each of the extreme points of .
Thus, to benchmark our dilation integral computations to follow,
we need only check the sign of at the 512 extreme points
of the uncertainty bounding set to verify that is not a
positive pair at this looseness level4. Using MATLAB’s symbolic
engine to compute the dilation integrals for , we obtain

, corresponding to , in approximately
20 seconds of computation time. For , MATLAB could not
complete the computation on our computer due to memory con-
straints. Thus, for this example, it was not possible to come to a

4It is straightforward to see that the maximal gain for the network over all
variations of � is attained by putting � , � , � at their maximum admissible
values and the rest of the uncertainties at their minimum values.
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Fig. 4. Three-loop resistive ladder network.

TABLE III
PERCENTAGE VIOLATION ESTIMATES VIA SMOLYAK FORMULAS

conclusion of either practical positivity or non-positivity using
straightforward symbolic computation of the dilation integrals.

However, using the method of computation associated with
Theorem IV-D, the same value of is obtained in approxi-
mately 0.1 seconds of computation time. Additionally, we are
able to compute for higher values of . Namely

With a percentage violation under one percent of the parameter
space, in some situations, one may conclude that the robustness
requirement is satisfied in a practical sense.

G. Example (Robust Controllability)

We once again revisit the robust controllability example from
Sections I-A and III-C. Recall that the case was previ-
ously studied and arguments were provided as to why compu-
tational tractability with higher values would be important.
To this end, Theorem IV-D is now applied to estimate the per-
centage violation. Using the Smolyak formulae and Theorem
IV-D, we obtain estimates for ranging 2 to 20, for three dif-
ferent values of the uncertainty radius ; see Table III. Note that
in [1], the radius of robustness was also approximated by a brute
force gridding with samples evenly spaced over
the parameter hypercube, yielding . Consistent
with Theorem II-A, the sequence of estimates decreases for

, as the pair is indeed a positive pair at this un-
certainty radius. The cubature formulae allow the computation
of for as high as 20, leading to much tighter bounds on the
percentage violation than would be available through straight-
forward symbolic computation; e.g., MATLAB’s symbolic en-
gine, which stalls for .

V. CONCLUSION

In this paper, a softened formulation has been given for the
NP-hard problem of checking positivity of polynomials in sev-
eral variables. This is accomplished by allowing for a small per-
centage volume of violation of the desired property. In partic-

ular, a numerically straightforward procedure, the dilation inte-
gral method, for computing a sequence of upper bounds for this
quantity has been devised. Two major modifications of the basic
scheme were also provided. The first one incorporates extra pa-
rameters in the integrand leading to improved convergence of
the sequence of upper bounds while retaining convexity proper-
ties. Another modification exploits numerically exact evaluation
of dilation integrals over sparse grids yielding considerable sim-
plifications by exploiting structure in symbolic calculations.

Another important aspect of this paper is the relationship
. This inequality makes it possible to obtain a predetermined

-level which leads to a certification of either practical positivity
or practical non-positivity. In this regard, it is of interest to note
that it may be possible to improve the theory in this paper by
defining the conditioner in a different manner. To illustrate one
of the many possibilities, we introduce a tunable parameter

which is used for “centering” purposes and note that positivity
of the pair is equivalent to the requirement that

for some and all . In fact, this extra
degree of freedom provided by might lead to improvements
in computational efficiency. To see this, for each candidate ,
let

and note the following: Use of the dilation integral method on
the pair leads to a percentage volume bound, call it for

which dominates the original volume bound for
and also tends to zero for a positive pair with appropriately
tuned. This motivates defining a new conditioner

which can be justified in much the same way as the original ;
e.g., as with optimally tuned, positivity of the pair

is lost. For the special case when happens to be the
midpoint of the range , note that we obtain . To
exploit these ideas, we first compute the extrema for . Namely

and thus, the conditioner for , call it , is given by

Now using the fact that , we obtain

and a lengthy but straightforward computation leads to

Using universal bounds such as the one above, it may often be
possible to terminate computations with low -values. To illus-
trate, with above, one can guarantee that with

.
Another area of interest for future research is the further re-

finement of the estimate for the percentage violation. As ex-
plained in Section III, this estimate involves the weighting func-
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tion designed to yield the smallest possible estimate for
the percentage violation, subject to convexity and positivity con-
ditions. It may be the case that certain classes of polynomials
exhibit a particular structure that may be exploited to yield a
choice of which results in an improved estimate for the per-
centage violation. Along these lines, [4] and [31] provide results
which accelerate the convergence of the conditioner estimate
or multilinear positivity problems, such as the examples in Sec-
tions III-D and F. More specifically, with being a multi-
linear function and taking to be tunable parame-
ters, let

and obtain the sequence of conditioner estimates

which can be shown to converge in a non-decreasing manner to
and can also be used as a lower bound. The optimization of the

parameters within , a finite subset of , results in a much
tighter lower bound on for a given exponent . It is hoped
that results like these could be developed for other classes of
polynomial positivity problems.

Another strategy for improving volume estimates involves
dividing the uncertainty bounding set and examining the
volume of violation over each individual subset. Preliminary
results suggest that when is divided in an adaptively strategic
manner, the sum of the individual volume bounds is less than
the volume bound obtained with one integration over all of .

These strategies focus on improving the percentage violation
and conditioner estimates to achieve an acceptable result for
low ; i.e., we wish to avoid the exponential increase of the
number of dilation integrand terms as the index increases.
This combinatorial difficulty is not surprising, since the problem
is just a reformulation of the originally NP-hard prototype. By
way of further research, it would be interesting to analyze the
accuracy of computations when using cubature formulae with
degree of exactness less than the total degree of the integrand
in order to evaluate dilation integrals for very high values of ,
when necessary.

APPENDIX

Proof of Theorem II-A: The following proof is based on
the proof of the main theorem in [1]. Noting that is a
polynomial in with highest order term with ,
it follows that as . Combining this fact
with convexity of , it must be the case that the minimum is
attained. Now, to establish 1), it is noted that for arbitrary
and even, we have

To establish 2), with corresponding to minimiza-
tion and maximization of over the domain , we define

and consider the chain of inequalities

The fact that is a positive pair now ensures that

and it follows that
To establish 3), it is now assumed that . Then, in view

of 1), we obtain

To complete the proof, it remains to show that also im-
plies that is a positive pair. Proceeding by contradiction,
if is not a positive pair, then there exists some
with . Hence, in view of the continuity of , we have

on some set of positive volume. This implies
that for all even

This contradicts the standing hypothesis that .
Proof of Theorem II-F: The following proof is based on

the proof of the main theorem in [2]. Some basic properties of
the functions , which will be used later in the proof, are
noted: First, the function is convex and corresponds to the

norm of with respect to the measure

on measurable subsets of . Second, when is a pos-
itive pair, using the fact that as , it follows
that every attains its minimum at a finite point ;
hence, the quantities and introduced above are well de-
fined. Finally, note that guarantees that is
satisfied.

Now proceeding with the proof, we claim that the sequence
of functions converges pointwise to the limit function

To prove this, let be fixed arbitrarily and define the con-
tinuous function
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on the compact set . Noting classical results for convergence

of norms, e.g., see [32], with the fact that
as , we obtain

That is

and the claim of pointwise convergence is established. As the
next step of the proof, we claim that the sequence of functions

satisfies

for all even ; i.e., it is non-decreasing. Indeed, for the non-neg-
ative continuous introduced above, by Hölder’s inequality,
see [32], it follows that:

Now multiplying both sides by and taking the th
root of both sides yields

It then follows that the sequence is non-de-
creasing. To continue the proof, we now claim that for every ,
for the case when is a positive pair, the minimization of

is attained with

That is, we have a fixed compact set over which all minimiza-
tions can be restricted. To prove this, it suffices to show that with

we have

In other words, such exceeding this threshold cannot be op-
timal. To this end, it is first observed that for such , we have

for all . Hence, for such and all , it
follows that

This implies that

which establishes the claim. In view of this claim, we now have
a non-decreasing pointwise convergent sequence of continuous
functions over the compact set with (continuous) lim-
iting function . By Dini’s theorem, for example, see [33],
it follows that the sequence of functions converges uni-
formly to . Therefore, taking minimum with respect to of
both sides of the limiting relation , we
can change the order of the lim and min operations. This leads
to

and arrive at

The last step is to show that the right-hand side of the equality
above is equal to if is a positive pair, and is equal to
unity otherwise. This can be done by representing the limiting
function in the “parametric” form

A straightforward analysis of the piecewise linear function ,
performed under the assumption , leads to a conclu-
sion: If , then

and if , then

The proof of theorem is now complete.
Proof of Lemma III-B: The following proof is based on the

proof of a theorem in [31]. With the dilation integrand

we see that for and fixed , the function
satisfies Jensen’s inequality for every fixed . Namely, for
any and any two elements and belonging to ,
straightforward algebraic manipulation shows that

As this difference is clearly non-negative, Jensen’s inequality
is satisfied, and we conclude that is convex in for
each fixed . We may also conclude that for positive even
integers , the function is convex in for each ,
being the result of the non-negative convex function
raised to a power greater than or equal to unity. Seeing that the
dilation integrand thus satisfies Jensen’s inequality at
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every fixed in the domain of integration , we conclude that
a Jensen-like inequality is also satisfied for the integral. Namely

Normalizing by , we obtain

which completes the proof.
Proof of Theorem IV-D: First notice that the dilation inte-

grand may be written as

Then, since for the particular choice of , the Smolyak formula
is exact for every -polynomial of total degree less than or equal
to , it follows that:

The statement then follows from algebraic manipulations and
from the definition of and .
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